Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
1.
Am J Physiol Heart Circ Physiol ; 323(6): H1167-H1175, 2022 Dec 01.
Article in English | MEDLINE | ID: covidwho-2194191

ABSTRACT

Microvascular disease plays a critical role in systemic end-organ dysfunction, and treatment of microvascular pathologies may greatly reduce cardiovascular morbidity and mortality. The Call for Papers collection: New Developments in Translational Microcirculatory Research highlights key advances in our understanding of the role of microvessels in the development of chronic diseases as well as therapeutic strategies to enhance microvascular function. This Mini Review provides a concise summary of these advances and draws from other relevant research to provide the most up-to-date information on the influence of cutaneous, cerebrovascular, coronary, and peripheral microcirculation on the pathophysiology of obesity, hypertension, cardiovascular aging, peripheral artery disease, and cognitive impairment. In addition to these disease- and location-dependent research articles, this Call for Papers includes state-of-the-art reviews on coronary endothelial function and assessment of microvascular health in different organ systems, with an additional focus on establishing rigor and new advances in clinical trial design. These articles, combined with original research evaluating cellular, exosomal, pharmaceutical, exercise, heat, and dietary interventional therapies, establish the groundwork for translating microcirculatory research from bench to bedside. Although numerous studies in this collection are focused on human microcirculation, most used robust preclinical models to probe mechanisms of pathophysiology and interventional benefits. Future work focused on translating these findings to humans are necessary for finding clinical strategies to prevent and treat microvascular dysfunction.


Subject(s)
Hypertension , Peripheral Vascular Diseases , Humans , Microcirculation/physiology , Microvessels , Endothelium
2.
Crit Care ; 26(1): 311, 2022 10 14.
Article in English | MEDLINE | ID: covidwho-2079529

ABSTRACT

BACKGROUND: The sublingual microcirculation presumably exhibits disease-specific changes in function and morphology. Algorithm-based quantification of functional microcirculatory hemodynamic variables in handheld vital microscopy (HVM) has recently allowed identification of hemodynamic alterations in the microcirculation associated with COVID-19. In the present study we hypothesized that supervised deep machine learning could be used to identify previously unknown microcirculatory alterations, and combination with algorithmically quantified functional variables increases the model's performance to differentiate critically ill COVID-19 patients from healthy volunteers. METHODS: Four international, multi-central cohorts of critically ill COVID-19 patients and healthy volunteers (n = 59/n = 40) were used for neuronal network training and internal validation, alongside quantification of functional microcirculatory hemodynamic variables. Independent verification of the models was performed in a second cohort (n = 25/n = 33). RESULTS: Six thousand ninety-two image sequences in 157 individuals were included. Bootstrapped internal validation yielded AUROC(CI) for detection of COVID-19 status of 0.75 (0.69-0.79), 0.74 (0.69-0.79) and 0.84 (0.80-0.89) for the algorithm-based, deep learning-based and combined models. Individual model performance in external validation was 0.73 (0.71-0.76) and 0.61 (0.58-0.63). Combined neuronal network and algorithm-based identification yielded the highest externally validated AUROC of 0.75 (0.73-0.78) (P < 0.0001 versus internal validation and individual models). CONCLUSIONS: We successfully trained a deep learning-based model to differentiate critically ill COVID-19 patients from heathy volunteers in sublingual HVM image sequences. Internally validated, deep learning was superior to the algorithmic approach. However, combining the deep learning method with an algorithm-based approach to quantify the functional state of the microcirculation markedly increased the sensitivity and specificity as compared to either approach alone, and enabled successful external validation of the identification of the presence of microcirculatory alterations associated with COVID-19 status.


Subject(s)
COVID-19 , Critical Illness , Artificial Intelligence , Humans , Microcirculation/physiology , Sensitivity and Specificity
4.
Am J Physiol Heart Circ Physiol ; 322(2): H319-H327, 2022 02 01.
Article in English | MEDLINE | ID: covidwho-1613119

ABSTRACT

Vascular dysfunction has been reported in adults who have recovered from COVID-19. To date, no studies have investigated the underlying mechanisms of persistent COVID-19-associated vascular dysfunction. Our purpose was to quantify nitric oxide (NO)-mediated vasodilation in healthy adults who have recovered from SARS-CoV-2 infection. We hypothesized that COVID-19-recovered adults would have impaired NO-mediated vasodilation compared with adults who have not had COVID-19. In methods, we performed a cross-sectional study including 10 (5 men/5 women, 24 ± 4 yr) healthy control (HC) adults who were unvaccinated for COVID-19, 11 (4 men/7 women, 25 ± 6 yr) healthy vaccinated (HV) adults, and 12 (5 men/7 women, 22 ± 3 yr) post-COVID-19 (PC, 19 ± 14 wk) adults. COVID-19 symptoms severity (survey) was assessed. A standardized 39°C local heating protocol was used to assess NO-dependent vasodilation via perfusion (intradermal microdialysis) of 15 mM NG-nitro-l-arginine methyl ester during the plateau of the heating response. Red blood cell flux was measured (laser-Doppler flowmetry) and cutaneous vascular conductance (CVC = flux/mmHg) was expressed as a percentage of maximum (28 mM sodium nitroprusside + 43°C). In results, the local heating plateau (HC: 61 ± 20%, HV: 60 ± 19%, PC: 67 ± 19%, P = 0.80) and NO-dependent vasodilation (HC: 77 ± 9%, HV: 71 ± 7%, PC: 70 ± 10%, P = 0.36) were not different among groups. Neither symptom severity (25 ± 12 AU) nor time since diagnosis correlated with the NO-dependent vasodilation (r = 0.46, P = 0.13; r = 0.41, P = 0.19, respectively). In conclusion, healthy adults who have had mild-to-moderate COVID-19 do not have altered NO-mediated cutaneous microvascular function.NEW & NOTEWORTHY Healthy young adults who have had mild-to-moderate COVID-19 do not display alterations in nitric oxide-mediated cutaneous microvascular function. In addition, healthy young adults who have COVID-19 antibodies from the COVID-19 vaccinations do not display alterations in nitric oxide-mediated cutaneous microvascular function.


Subject(s)
COVID-19/physiopathology , Microcirculation/physiology , Skin/blood supply , Vasodilation/physiology , Adult , COVID-19/metabolism , COVID-19/prevention & control , COVID-19 Vaccines/therapeutic use , Case-Control Studies , Enzyme Inhibitors/pharmacology , Female , Humans , Laser-Doppler Flowmetry , Male , Microcirculation/drug effects , NG-Nitroarginine Methyl Ester/pharmacology , Nitric Oxide/metabolism , SARS-CoV-2 , Severity of Illness Index , Vasodilation/drug effects , Young Adult
5.
Crit Care ; 25(1): 381, 2021 11 08.
Article in English | MEDLINE | ID: covidwho-1506432

ABSTRACT

BACKGROUND: COVID-19 is primarily a respiratory disease; however, there is also evidence that it causes endothelial damage in the microvasculature of several organs. The aim of the present study is to characterize in vivo the microvascular reactivity in peripheral skeletal muscle of severe COVID-19 patients. METHODS: This is a prospective observational study carried out in Spain, Mexico and Brazil. Healthy subjects and severe COVID-19 patients admitted to the intermediate respiratory (IRCU) and intensive care units (ICU) due to hypoxemia were studied. Local tissue/blood oxygen saturation (StO2) and local hemoglobin concentration (THC) were non-invasively measured on the forearm by near-infrared spectroscopy (NIRS). A vascular occlusion test (VOT), a three-minute induced ischemia, was performed in order to obtain dynamic StO2 parameters: deoxygenation rate (DeO2), reoxygenation rate (ReO2), and hyperemic response (HAUC). In COVID-19 patients, the severity of ARDS was evaluated by the ratio between peripheral arterial oxygen saturation (SpO2) and the fraction of inspired oxygen (FiO2) (SF ratio). RESULTS: Healthy controls (32) and COVID-19 patients (73) were studied. Baseline StO2 and THC did not differ between the two groups. Dynamic VOT-derived parameters were significantly impaired in COVID-19 patients showing lower metabolic rate (DeO2) and diminished endothelial reactivity. At enrollment, most COVID-19 patients were receiving invasive mechanical ventilation (MV) (53%) or high-flow nasal cannula support (32%). Patients on MV were also receiving sedative agents (100%) and vasopressors (29%). Baseline StO2 and DeO2 negatively correlated with SF ratio, while ReO2 showed a positive correlation with SF ratio. There were significant differences in baseline StO2 and ReO2 among the different ARDS groups according to SF ratio, but not among different respiratory support therapies. CONCLUSION: Patients with severe COVID-19 show systemic microcirculatory alterations suggestive of endothelial dysfunction, and these alterations are associated with the severity of ARDS. Further evaluation is needed to determine whether these observations have prognostic implications. These results represent interim findings of the ongoing HEMOCOVID-19 trial. Trial registration ClinicalTrials.gov NCT04689477 . Retrospectively registered 30 December 2020.


Subject(s)
COVID-19/physiopathology , Intensive Care Units/trends , Microvessels/physiopathology , Respiratory Care Units/trends , Respiratory Distress Syndrome/physiopathology , Severity of Illness Index , Adult , Aged , Brazil/epidemiology , COVID-19/diagnosis , COVID-19/epidemiology , Female , Humans , Male , Mexico/epidemiology , Microcirculation/physiology , Middle Aged , Muscle, Skeletal/blood supply , Muscle, Skeletal/physiopathology , Prospective Studies , Respiratory Distress Syndrome/diagnosis , Respiratory Distress Syndrome/epidemiology , Spain/epidemiology
6.
Bull Exp Biol Med ; 171(4): 453-457, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1427311

ABSTRACT

Microcirculatory hemodynamic indexes (HI) were assessed in patients with moderate and severe COVID-19. In both groups, a significant increase in the absolute spectral indexes (HI1, HI2, and HI3) and the ratio of low-frequency to high-frequency component (HI1/HI3) was revealed. In the group of severe infection, only the "slow" index (low-frequency HI1) of microcirculatory hemodynamics was significantly lower. The oscillatory indices MAYER1-3 and RESP1-3 were reduced in patients of both groups. The aggravation of the disease course was accompanied by depression of the low-frequency index HI1. Regulatory shifts compensate for disturbances in microcirculatory processes in moderate COVID-19, but severe course was associated with their decompensation.


Subject(s)
COVID-19/physiopathology , Microcirculation/physiology , Hemodynamics/physiology , Humans
7.
Crit Care ; 25(1): 217, 2021 06 24.
Article in English | MEDLINE | ID: covidwho-1388810

ABSTRACT

BACKGROUND: The viral load of asymptomatic SAR-COV-2 positive (ASAP) persons has been equal to that of symptomatic patients. On the other hand, there are no reports of ST-elevation myocardial infarction (STEMI) outcomes in ASAP patients. Therefore, we evaluated thrombus burden and thrombus viral load and their impact on microvascular bed perfusion in the infarct area (myocardial blush grade, MBG) in ASAP compared to SARS-COV-2 negative (SANE) STEMI patients. METHODS: This was an observational study of 46 ASAP, and 130 SANE patients admitted with confirmed STEMI treated with primary percutaneous coronary intervention and thrombus aspiration. The primary endpoints were thrombus dimension + thrombus viral load effects on MBG after PPCI. The secondary endpoints during hospitalization were major adverse cardiovascular events (MACEs). MACEs are defined as a composite of cardiovascular death, nonfatal acute AMI, and heart failure during hospitalization. RESULTS: In the study population, ASAP vs. SANE showed a significant greater use of GP IIb/IIIa inhibitors and of heparin (p < 0.05), and a higher thrombus grade 5 and thrombus dimensions (p < 0.05). Interestingly, ASAP vs. SANE patients had lower MBG and left ventricular function (p < 0.001), and 39 (84.9%) of ASAP patients had thrombus specimens positive for SARS-COV-2. After PPCI, a MBG 2-3 was present in only 26.1% of ASAP vs. 97.7% of SANE STEMI patients (p < 0.001). Notably, death and nonfatal AMI were higher in ASAP vs. SANE patients (p < 0.05). Finally, in ASAP STEMI patients the thrombus viral load was a significant determinant of thrombus dimension independently of risk factors (p < 0.005). Thus, multiple logistic regression analyses evidenced that thrombus SARS-CoV-2 infection and dimension were significant predictors of poorer MBG in STEMI patients. Intriguingly, in ASAP patients the female vs. male had higher thrombus viral load (15.53 ± 4.5 vs. 30.25 ± 5.51 CT; p < 0.001), and thrombus dimension (4.62 ± 0.44 vs 4.00 ± 1.28 mm2; p < 0.001). ASAP vs. SANE patients had a significantly lower in-hospital survival for MACE following PPCI (p < 0.001). CONCLUSIONS: In ASAP patients presenting with STEMI, there is strong evidence towards higher thrombus viral load, dimension, and poorer MBG. These data support the need to reconsider ASAP status as a risk factor that may worsen STEMI outcomes.


Subject(s)
COVID-19/complications , Coronary Thrombosis/virology , Heart/physiopathology , Microcirculation/physiology , Myocardial Infarction/physiopathology , Aged , Analysis of Variance , Asymptomatic Infections/epidemiology , COVID-19/epidemiology , Cohort Studies , Coronary Angiography/methods , Coronary Thrombosis/epidemiology , Echocardiography/methods , Female , Humans , Kaplan-Meier Estimate , Male , Middle Aged , Myocardial Infarction/epidemiology
8.
Crit Care Med ; 49(4): 661-670, 2021 04 01.
Article in English | MEDLINE | ID: covidwho-1238251

ABSTRACT

OBJECTIVES: In this study, we hypothesized that coronavirus disease 2019 patients exhibit sublingual microcirculatory alterations caused by inflammation, coagulopathy, and hypoxemia. DESIGN: Multicenter case-controlled study. SETTING: Two ICUs in The Netherlands and one in Switzerland. PATIENTS: Thirty-four critically ill coronavirus disease 2019 patients were compared with 33 healthy volunteers. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: The microcirculatory parameters quantified included total vessel density (mm × mm-2), functional capillary density (mm × mm-2), proportion of perfused vessels (%), capillary hematocrit (%), the ratio of capillary hematocrit to systemic hematocrit, and capillary RBC velocity (µm × s-1). The number of leukocytes in capillary-postcapillary venule units per 4-second image sequence (4 s-1) and capillary RBC microaggregates (4 s-1) was measured. In comparison with healthy volunteers, the microcirculation of coronavirus disease 2019 patients showed increases in total vessel density (22.8 ± sd 5.1 vs 19.9 ± 3.3; p < 0.0001) and functional capillary density (22.2 ± 4.8 vs 18.8 ± 3.1; p < 0.002), proportion of perfused vessel (97.6 ± 2.1 vs 94.6 ± 6.5; p < 0.01), RBC velocity (362 ± 48 vs 306 ± 53; p < 0.0001), capillary hematocrit (5.3 ± 1.3 vs 4.7 ± 0.8; p < 0.01), and capillary-hematocrit-to-systemic-hematocrit ratio (0.18 ± 0.0 vs 0.11 ± 0.0; p < 0.0001). These effects were present in coronavirus disease 2019 patients with Sequential Organ Failure Assessment scores less than 10 but not in patients with Sequential Organ Failure Assessment scores greater than or equal to 10. The numbers of leukocytes (17.6 ± 6.7 vs 5.2 ± 2.3; p < 0.0001) and RBC microaggregates (0.90 ± 1.12 vs 0.06 ± 0.24; p < 0.0001) was higher in the microcirculation of the coronavirus disease 2019 patients. Receiver-operating-characteristics analysis of the microcirculatory parameters identified the number of microcirculatory leukocytes and the capillary-hematocrit-to-systemic-hematocrit ratio as the most sensitive parameters distinguishing coronavirus disease 2019 patients from healthy volunteers. CONCLUSIONS: The response of the microcirculation to coronavirus disease 2019-induced hypoxemia seems to be to increase its oxygen-extraction capacity by increasing RBC availability. Inflammation and hypercoagulation are apparent in the microcirculation by increased numbers of leukocytes and RBC microaggregates.


Subject(s)
COVID-19/mortality , Capillaries , Hypoxia/etiology , Leukocytes , Microcirculation/physiology , Erythrocytes , Female , Humans , Male , Middle Aged
9.
Microcirculation ; 28(7): e12718, 2021 10.
Article in English | MEDLINE | ID: covidwho-1236400

ABSTRACT

Recently, accumulating evidence has highlighted the role of endothelial dysfunction in COVID-19 progression. Coronary microvascular dysfunction (CMD) plays a pivotal role in cardiovascular disease (CVD) and CVD-related risk factors (eg, age, gender, hypertension, diabetes mellitus, and obesity). Equally, these are also risk factors for COVID-19. The purpose of this review was to explore CMD pathophysiology in COVID-19, based on recent evidence. COVID-19 mechanisms were reviewed in terms of imbalanced renin-angiotensin-aldosterone-systems (RAAS), systemic inflammation and immune responses, endothelial dysfunction, and coagulatory disorders. Based on these mechanisms, we addressed CMD pathophysiology within the context of COVID-19, from five perspectives. The first was the disarrangement of local RAAS and Kallikrein-kinin-systems attributable to SARS-Cov-2 entry, and the concomitant decrease in coronary microvascular endothelial angiotensin I converting enzyme 2 (ACE2) levels. The second was related to coronary microvascular obstruction, induced by COVID-19-associated systemic hyper-inflammation and pro-thrombotic state. The third was focused on how pneumonia/acute respiratory distress syndrome (ARDS)-related systemic hypoxia elicited oxidative stress in coronary microvessels and cardiac sympathetic nerve activation. Fourthly, we discussed how autonomic nerve dysfunction mediated by COVID-19-associated mental, physical, or physiological factors could elicit changes in coronary blood flow, resulting in CMD in COVID-19 patients. Finally, we analyzed reciprocity between the coronary microvascular endothelium and perivascular cellular structures due to viremia, SARS-CoV-2 dissemination, and systemic inflammation. These mechanisms may function either consecutively or intermittently, finally culminating in CMD-mediated cardiovascular symptoms in COVID-19 patients. However, the underlying molecular pathogenesis remains to be clarified.


Subject(s)
COVID-19/physiopathology , Coronary Vessels/physiopathology , SARS-CoV-2 , COVID-19/complications , COVID-19/immunology , Cardiovascular Diseases/etiology , Cardiovascular Diseases/physiopathology , Disease Progression , Endothelium, Vascular/physiopathology , Female , Humans , Inflammation/physiopathology , Male , Microcirculation/physiology , Models, Cardiovascular , Renin-Angiotensin System/physiology , Risk Factors , Thrombosis/etiology , Thrombosis/physiopathology
10.
Shock ; 56(6): 964-968, 2021 12 01.
Article in English | MEDLINE | ID: covidwho-1220083

ABSTRACT

BACKGROUND: Endothelial and microvascular dysfunction may be a key pathogenic feature of severe COVID-19. The aim of this study was to investigate endothelial-dependent and endothelial-independent skin microvascular reactivity in patients with critical COVID-19. METHODS: Twelve patients with COVID-19 treated with non-invasive or invasive mechanical ventilation were included in the study. We investigated skin microvascular reactivity on 2 separate days during hospitalization (study day 1 and 2) and at least 3 months after disease onset (study day 3). Twelve controls with no confirmed or suspected COVID-19 infection during 2020 were also examined. Skin perfusion was investigated through Laser Speckle Contrast Imaging before and after iontophoresis of acetylcholine (ACh) and sodium nitroprusside (SNP) to determine the endothelial-dependent and the endothelial-independent vasodilation, respectively. RESULTS: Compared to controls, patients with critical COVID-19 had higher basal skin perfusion and reduced responses to endothelial-dependent (ACh, P = 0.002) and endothelial-independent (SNP, P = 0.01) vasodilator drugs on study day 1. In addition, the ACh/SNP ratio was significantly reduced in patients (0.50 ±â€Š0.36 vs. 0.91 ±â€Š0.49 in controls, P = 0.02). Three months after disease onset, surviving patients tended to have reduced ACh-mediated vasodilation compared to controls (P = 0.08). CONCLUSIONS: This small-sized pilot study demonstrates that critical COVID-19 infection is associated with microvascular impairment and, in particular, a markedly reduced endothelial function. Our results also suggest that microvascular function may not be fully recovered 3 months after disease onset.


Subject(s)
COVID-19/epidemiology , Critical Illness/epidemiology , Endothelium, Vascular/physiopathology , Microcirculation/physiology , Regional Blood Flow/physiology , Vasodilation/physiology , Aged , COVID-19/physiopathology , Comorbidity , Female , Follow-Up Studies , Humans , Male , Microvessels/physiopathology , Middle Aged , Pilot Projects , Prospective Studies , SARS-CoV-2
11.
Am J Pathol ; 191(7): 1154-1164, 2021 07.
Article in English | MEDLINE | ID: covidwho-1219865

ABSTRACT

Severe acute respiratory syndrome coronavirus 2, the etiologic agent of coronavirus disease 2019 (COVID-19) and the cause of the current pandemic, produces multiform manifestations throughout the body, causing indiscriminate damage to multiple organ systems, particularly the lungs, heart, brain, kidney, and vasculature. The aim of this review is to provide a new assessment of the data already available for COVID-19, exploring it as a transient molecular disease that causes negative regulation of angiotensin-converting enzyme 2, and consequently, deregulates the renin-angiotensin-aldosterone system, promoting important changes in the microcirculatory environment. Another goal of the article is to show how these microcirculatory changes may be responsible for the wide variety of injury mechanisms observed in different organs in this disease. The new concept of COVID-19 provides a unifying pathophysiological picture of this infection and offers fresh insights for a rational treatment strategy to combat this ongoing pandemic.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , COVID-19/metabolism , Down-Regulation , Microcirculation/physiology , Renin-Angiotensin System/physiology , Angiotensin-Converting Enzyme 2/genetics , COVID-19/genetics , COVID-19/pathology , Humans
12.
PLoS One ; 16(2): e0246636, 2021.
Article in English | MEDLINE | ID: covidwho-1069631

ABSTRACT

BACKGROUND: Data on microcirculatory pattern of COVID-19 critically ill patients are scarce. The objective was to compare sublingual microcirculation parameters of critically ill patients according to the severity of the disease. METHODS: The study is a single-center prospective study with critically ill COVID-19 patients admitted in ICU. Sublingual microcirculation was assessed by IDF microscopy within 48 hours of ICU admission. Microcirculatory flow index (MFI), proportion of perfused vessel (PPV), total vessel density (TVD), De Backer score (DBS), perfused vessel density (PVD) and heterogeneity index (HI) were assessed. Patients were divided in 2 groups (severe and critical) according to the World health organization definition. FINDINGS: From 19th of March to 7th of April 2020, 43 patients were included. Fourteen patients (33%) were in the severe group and twenty-nine patients (67%) in the critical group. Patients in the critical group were all mechanically ventilated. The critical group had significantly higher values of MFI, DBS and PVD in comparison to severe group (respectively, PaCO2: 49 [44-45] vs 36 [33-37] mmHg; p<0,0001, MFI: 2.8 ± 0.2 vs 2.5 ± 0.3; p = 0.001, DBS: 12.7 ± 2.6 vs 10.8 ± 2.0 vessels mm-2; p = 0.033, PVD: 12.5 ± 3.0 vs 10.1 ± 2.4 mm.mm-2; p = 0.020). PPV, HI and TVD were similar between groups Correlation was found between microcirculatory parameters and PaCO2 levels. CONCLUSION: Critical COVID-19 patients under mechanical ventilation seem to have higher red blood cell velocity than severe non-ventilated patients.


Subject(s)
COVID-19/physiopathology , Critical Illness , Microcirculation/physiology , Microvessels/physiopathology , Aged , COVID-19/virology , Carbon Dioxide/metabolism , Female , Hemodynamics , Humans , Intensive Care Units , Male , Middle Aged , Oxygen/metabolism , Partial Pressure , Prospective Studies , SARS-CoV-2/physiology
13.
Clin Hemorheol Microcirc ; 78(1): 41-47, 2021.
Article in English | MEDLINE | ID: covidwho-1058391

ABSTRACT

Low plasma estrogens, vitamin D deficiency, obesity, diabetes, cardiovascular diseases, thromboembolism, and impaired microcirculation are linked to the severity of covid-19. Studies have suggested that these comorbidities also are related to erythrocyte factors linked to increased blood viscosity in microcirculation such as erythrocyte aggregation and erythrocyte deformability. Increased blood viscosity in microcirculation can lead to a decrease in oxygenation and nutrition of tissues. Therefore erythrocyte aggregation and erythrocyte deformability may be involved in covid-19 severity, leading to tissue hypoxia and a decrease of drug concentration in affected organs. If this relationship is demonstrated, erythrocytes factors can be used to monitor treatments for improve microcirculatory fluidity that may decrease covid-19 severity. Lifestyle improvement and treatments such as vitamin D and estrogens supplementation are some possible approaches to improve microcirculation and covid-19 prevention and treatment.


Subject(s)
COVID-19/blood , Erythrocytes/physiology , Microcirculation/physiology , Blood Viscosity , COVID-19/physiopathology , COVID-19/therapy , Erythrocyte Aggregation , Erythrocyte Deformability , Erythrocytes/pathology , Humans , SARS-CoV-2/isolation & purification
14.
Curr Neurovasc Res ; 17(5): 784-792, 2020.
Article in English | MEDLINE | ID: covidwho-999945

ABSTRACT

A pericyte-centered theory suggesting that embolisms occurring within the microvasculature of a neurovascular unit that can result in either parenchymal hemorrhage or intravascular congestion is presented here. Dysfunctional microvascular pericytes are characterized by their location in the neurovascular unit, either on the arteriole or venule side. Pathophysiological and pathological changes caused by coronavirus disease 2019 (COVID-19) include pulmonary hypertension, edema, focal hemorrhage, microvascular congestion, and thrombosis. In this paper, the application of the pericytes-centered hypothesis to COVID-19 has been presented by proposing the concept of a pulmonary neurovascular unit (pNVU). The application of this concept implies that human lungs contain approximately 300 million pNVUs. This concept of existing local regulation of microvascular blood flow is supported by the observation of pathophysiology in pulmonary embolism and in acute high-altitude illness. The autonomic control seen in these three disease states matches blood flow with oxygen supply in each pNVU to maintain physiological blood oxygen saturation level. This paper illustrates how the malfunction of microvascular pericytes may cause focal hemorrhage, edema or microvascular congestion and thrombosis. A bypass existing in each pNVU would autonomically deviate blood flow from a COVID-19-affected pNVU to other healthy pNVUs. This action would prevent systemically applied medicines from reaching the therapeutic threshold in COVID-19-affected pNVUs. While testing this hypothesis with experimental evidence is urgently needed, supporting therapy aimed at improving microcirculation or rebuilding the physiological function of microvascular pericytes is recommended as a potentially effective treatment of COVID 19.


Subject(s)
Blood-Brain Barrier/metabolism , Brain/metabolism , COVID-19/metabolism , Neurovascular Coupling/physiology , Pericytes/metabolism , Animals , Blood-Brain Barrier/pathology , Brain/pathology , COVID-19/pathology , Humans , Microcirculation/physiology , Microvessels/metabolism , Microvessels/pathology , Pericytes/pathology
16.
Clin Hemorheol Microcirc ; 75(1): 27-34, 2020.
Article in English | MEDLINE | ID: covidwho-612039

ABSTRACT

The burden of pandemic COVID-19 is growing worldwide, as the continuous increases of contagion. Only 10-15% of the entire infected population has the necessity of intensive care unit (ICU) treatments. But, this relatively low rate of patients has absorbed almost the whole availability of ICU during few days, becoming at least in Italy, an emergency for the national health system. In COVID-19 ICU patients massive aggression of lung with severe pulmonary failure, as well as kidney and liver injuries, heart, brain, bowel and spleen damages with lymph nodes necrosis and even cutaneous manifestations have been observed. Moreover, increased levels of cytokines so-called "cytokines storm (CS), and overt intravascular disseminated coagulation have been also reported. The hypercoagulation and CS would speculate about a microvascular dysfunction. Unfortunately, no specific observations have been performed on microcirculatory dysfunction in COVID-19 patients. Hence the presumed pathophysiological pathways and models about a microvascular involvement can be gathered by sepsis models studies. But despite this lack of evidence, the COVID-19 has emphasized the compelling need for microcirculation monitoring at the bedside in ICU patients.


Subject(s)
Coronavirus Infections/diagnosis , Endothelium, Vascular/virology , Microcirculation/physiology , Pneumonia, Viral/diagnosis , Betacoronavirus/isolation & purification , COVID-19 , Coronavirus Infections/pathology , Coronavirus Infections/virology , Endothelium, Vascular/pathology , Humans , Pandemics , Pneumonia, Viral/pathology , Pneumonia, Viral/virology , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL